人工智能用于逆设计纳米颗粒 以发出特定的颜色光谱
麻省理工学院的物理学家开发的一项新技术可能会在某天提供一种定制设计具有所需特性的多层纳米粒子的方法,该纳米粒子可能用于显示器,隐身系统或生物医学设备。它还可能以某些情况下比现有方法快几个数量级的方式帮助物理学家解决各种棘手的研究问题。
这项创新使用了一种人工智能形式的计算神经网络来“学习”纳米粒子的结构如何影响其行为,在这种情况下,它是基于数千个训练示例来散射不同颜色的光的方式。然后,在了解了这种关系之后,该程序实际上可以向后运行,以设计具有所需的光散射属性集的粒子-此过程称为逆设计。
麻省理工学院高级约翰·皮里佛(John Peurifoy),研究附属机构沉一尘(Ichen Shen),研究生李静,物理学教授马林·索尔贾西奇(Marin Soljacic)等人的论文在《科学进展》杂志上发表了这些发现。
Soljacic说,虽然这种方法最终可能会导致实际应用,但这项工作主要具有科学意义,可以作为一种预测各种纳米工程材料的物理特性的方法,而无需通常用于解决此类问题的计算密集型仿真过程。
Soljacic表示,目标是研究神经网络,该领域近年来取得了很大的进步,并引起了人们的兴奋,他说:“我们是否可以使用其中一些技术来帮助我们进行物理研究。基本上,计算机是否“智能”到足以使它们能够执行一些更智能的任务来帮助我们理解和使用某些物理系统?”
为了解释这个想法,他们使用了一个相对简单的物理系统。“为了了解哪种技术合适,并了解其局限性以及如何最好地利用它们,我们在一个特定的纳米光子系统上使用了神经网络,该系统是球形同心纳米粒子。” 纳米颗粒像洋葱一样分层,但是每一层都由不同的材料制成并且具有不同的厚度。
纳米粒子的尺寸可与可见光的波长相比或更小,并且不同颜色的光从这些粒子上散射的方式取决于这些层的细节以及入射光束的波长。对于具有多层的纳米颗粒,计算所有这些影响可能是多层多层纳米颗粒的一项繁重的计算任务,并且随着层数的增加,复杂性变得越来越差。
研究人员希望了解神经网络是否能够预测新粒子散射光的颜色的方式-不仅是通过在已知示例之间进行插值,而且是通过实际找出一些允许神经网络进行推断的基本模式。
Peurifoy说:“模拟非常精确,因此当您将它们与实验进行比较时,它们都会一点一点地重现。” “但是它们在数值上是相当密集的,因此需要花费相当长的时间。如果要在神经网络中展示这些粒子的示例,许多不同的粒子,那么我们想在这里看到的是,神经网络是否可以发展“直觉”。”
当然,神经网络能够很好地预测光散射与波长的关系图的精确模式-并非完美,但非常接近,而且所需时间更少。Jing说,神经网络模拟“现在比精确模拟要快得多”。“因此,现在您可以使用神经网络代替真实的模拟,这将为您提供相当准确的预测。但这是有代价的,而代价是我们必须首先训练神经网络,然后为此,我们不得不提供大量示例。”
但是,一旦对网络进行了训练,任何将来的仿真都将获得加速的全部好处,因此它对于需要重复仿真的情况可能是一个有用的工具。但是该项目的真正目标是学习方法论,而不仅仅是这个特定的应用程序。Soljacic说:“我们对这个特定系统感兴趣的主要原因之一是让我们了解这些技术,而不仅仅是模拟纳米颗粒。”
下一步是实质上以相反的方式运行程序,以一组所需的散射特性作为起点,然后查看神经网络是否可以计算出实现该输出所需的纳米颗粒层的确切组合。
Soljacic说:“在工程学中,已经为逆设计开发了许多不同的技术,这是一个巨大的研究领域。” “但是通常要设置一个给定的逆设计问题需要花费一些时间,因此在许多情况下,您必须是该领域的专家,然后有时甚至花数月的时间来解决它。”
但是借助团队训练有素的神经网络,“我们对此没有做任何特殊的准备。我们说,'好吧,让我们尝试将其向后运行。' 令人惊讶的是,当我们将其与其他一些更标准的逆向设计方法进行比较时,这是最好的方法之一。” “它实际上比传统的逆设计要快得多。”
共同作者沉说:“我们这样做的最初动机是建立一个通用工具箱,任何不是光子学专家的受过良好教育的人都可以使用……这是我们最初的动机,显然在这种情况下效果很好。”
某些逆设计仿真中的加速可能非常重要。Peurifoy说:“很难对苹果进行精确的比较,但是您可以有效地说,您获得了数百倍的收益。因此,收益非常可观,在某些情况下,从几天到几分钟。”
免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!
-
宝子们,杭州 房子装修完成啦!这次要给大家分享几家设计超赞的装修公司哦。它们各具特色,从空间规划到风格...浏览全文>>
-
欲筑室者,先治其基。在上海,装修房子对于每个业主而言,都是极为关键的一步,然而,如何挑选一家值得信赖的...浏览全文>>
-
2025年以来,联通支付严格贯彻落实国家战略部署,以数字和科技为驱动,做好金融五篇大文章,履行支付为民社会...浏览全文>>
-
良工巧匠,方能筑就华居;精雕细琢,方可打造美家。当我们谈论装修公司时,选择一家靠谱可靠的公司是至关重要...浏览全文>>
-
在当今社会,随着城市化进程的高速推进,建筑垃圾的产生量与日俱增。据权威数据显示,我国每年建筑垃圾产生量超 ...浏览全文>>
-
家人们,在上海要装修,选对公司那可太重要了!古语有云:"安得广厦千万间,大庇天下寒士俱欢颜。"一个温馨的...浏览全文>>
-
近年来,新能源汽车市场发展迅猛,各大品牌纷纷推出各具特色的车型以满足消费者多样化的需求。作为国内新能源...浏览全文>>
-
近年来,随着汽车市场的不断变化和消费者需求的升级,安徽滁州地区的宝来2025新款车型在市场上引起了广泛关注...浏览全文>>
-
随着汽车市场的不断变化,滁州地区的消费者对高尔夫车型的关注度持续上升。作为大众品牌旗下的经典车型,高尔...浏览全文>>
-
在2023年,大众探影以其时尚的设计和出色的性能赢得了众多消费者的青睐。作为一款小型SUV,探影凭借其紧凑的车...浏览全文>>
- 安徽滁州途安L新车报价2022款,最低售价16.68万起,入手正当时
- 小鹏G7试驾,新手必知的详细步骤
- 别克GL8预约试驾,4S店的贴心服务与流程
- 安徽阜阳ID.4 CROZZ落地价全解,买车必看的省钱秘籍
- 淮北探岳多少钱 2025款落地价,最低售价17.69万起现在该入手吗?
- 安徽淮南大众CC新款价格2025款多少钱能落地?
- 淮北长安启源C798价格,最低售价12.98万起现在该入手吗?
- 安徽淮南途锐价格,各配置车型售价全解析
- 蒙迪欧试驾预约,4S店体验全攻略
- 沃尔沃XC40试驾需要注意什么
- 滁州ID.4 X新车报价2025款,各车型售价大公开,性价比爆棚
- 试驾思域,快速操作,轻松体验驾驶乐趣
- 试驾长安CS35PLUS,一键搞定,开启豪华驾驶之旅
- 天津滨海ID.6 X落地价限时特惠,最低售价25.9888万起,错过不再有
- 天津滨海凌渡多少钱?看完这篇购车攻略再做决定
- 安徽池州长安猎手K50落地价,买车前的全方位指南
- 山东济南ID.6 CROZZ 2024新款价格,最低售价19.59万起,现车充足
- 试驾海狮05EV,新手必知的详细步骤
- 生活家PHEV多少钱 2025款落地价走势,近一个月最低售价63.98万起,性价比凸显
- 奇瑞风云A9试驾,新手必知的详细步骤